

ANAIS

DO II CURSO DE VERÃO DE FISIOLOGIA DO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOMÉDICAS DO CENTRO UNIVERSITÁRIO DA FUNDAÇÃO HERMÍNIO OMETTO

DE 03 A 07 DE FEVEREIRO DE 2020

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOMÉDICAS CENTRO UNIVERISTÁRIO DA FUNDAÇÃO HERMÍNIO OMETTO FUNDAÇÃO HERMÍNIO OMETTO

ARARAS, SP

FICHA CATALOGRÁFICA

Elaborada pela Biblioteca "Duse Rüegger Ometto" CENTRO UNIVERSITÁRIO DA FUNDAÇÃO HERMÍNIO OMETTO

S456a

II Curso de Verão de Fisiologia. FHO | Programa de Pós-Graduação em Ciências Biomédicas (2.: 2020 : Araras, SP)

Anais do II Curso de Verão de Fisiologia do Programa de Pós-Graduação em Ciências Biomédicas do Centro Universitário da Fundação Hermínio de 03 a 07 de fevereiro de 2020. / Centro Universitário da Fundação Hermínio Ometto. -- Araras, SP: Fundação Hermínio Ometto, 2020.

20 p.

1. Fisiologia. I. Centro Universitário da Fundação Hermíno Ometto. II. Programa de Pós-Graduação em Ciências Biomédicas. III. Título.

CDD 612

CENTRO UNIVERSITÁRIO DA FUNDAÇÃO HERMÍNIO OMETTO

Prof. Dr. José Antonio Mendes **Reitor**

Prof. Dr. Olavo Raymundo Junior **Pró-Reitor de Graduação**

Prof. Dr. Marcelo Augusto Marretto Esquisatto Pró-Reitor de Pós Graduação e Pesquisa

Profa. Ms. Cristina da Cruz Franchini

Coordenadora de Comunidade e Extensão

Profa. Dra. Glaucia Maria Tech dos Santos

Coordenadora do Programa de Pós-graduação em Ciências

Biomédicas

Prof. Dr. Thiago A. M. Andrade

Vice-coordenador do Programa de Pós-graduação em Ciências

Biomédicas

II CURSO DE VERÃO DE FISIOLOGIA DO PROGRAMA DE PÓS GRADUAÇÃO EM CIÊNCIAS BIOMÉDICAS DO CENTRO UNIVERSITÁRIO DA FUNDAÇÃO HERMÍNIO OMETTO

COMISSÃO ORGANIZADORA II CURSO DE VERÃO DE FISIOLOGIA

Docentes do Programa de Pós-graduação em Ciências Biomédicas

Profa. Dra. Danielle Bernardes Profa. Dra. Gabriela B. Chiarotto Profa. Dra. Gláucia M. T. dos Santos Profa. Dra. Maira Felonato Mendes Profa. Dra. Maria Esméria C. do Amaral Prof. Dr. Maurício V. Mazzi Prof. Dr. Thiago A. M. Andrade

Discentes do Programa de Pós-graduação em Ciências Biomédicas

Anadelly Cristina da Silva de Lima Cristiane Alves Serra Jussara Aguiar Letícia Mayara Paiva Marcela Fernanda Sganzella

Discente Representante da Iniciação Científica

Aline N. Eugênio Helena Cambi Joyce Alessandra Lima Lucas Eduardo Ferreira Lopes

II CURSO DE VERÃO DE FISIOLOGIA DO PROGRAMA DE PÓS GRADUAÇÃO EM CIÊNCIAS BIOMÉDICAS DO CENTRO UNIVERSITÁRIO DA FUNDAÇÃO HERMÍNIO OMETTO

EDITORIAL

O Programa de Pós-graduação em Ciências Biomédicas do Centro Universitário da Fundação Hermínio Ometto, com área básica em Fisiologia, tem a honrosa satisfação de oferecer o "I Curso de Verão em Fisiologia" com o objetivo de aprofundar os conhecimentos dos estudantes na disciplina, assim como, promover a extensão universitária para alunos de Graduação dos cursos da área das Ciências Biológicas de diversas universidades e da própria Instituição, no intuito de estimular o interesse científico e favorecerá a divulgação das diferentes linhas de pesquisa dos docentes orientadores do Mestrado do Programa de Pósgraduação em Ciências Biomédicas, promovendo a integração entre alunos de Pós-graduação e Graduação, despertando desta forma, o interesse dos alunos de Graduação em cursar uma Pós-graduação.

COMISSÃO ORGANIZADORA
II CURSO DE VERÃO DE FISIOLOGIA

ÍNDICE

PROGRAMAÇÃO	7
AULAS MAGNAS	9
HOMEOSTASIA E MECANISMOS HOMEOSTÁTICOS	9
NEUROFISIOLOGIA (ELETROFISIOLOGIA)	10
FISIOLOGIA DO SISTEMA NERVOSO	11
FISIOLOGIA MUSCULAR	12
FISIOLOGIA CARDÍACA	13
FISIOLOGIA RESPIRATÓRIA	14
FISIOLOGIA RENAL	15
FISIOLOGIA ENDÓCRINA	16
MESA-REDONDA	17
DIFICULDADES DO USO MEDICINAL DE CANABINOIDES	17
APRESENTAÇÃO DAS LINHAS DE PESQUISA	18
MÓDULOS PRÁTICOS	20

PROGRAMAÇÃO

Início	Término	Conteúdo – Segunda-feira (1°dia)
8:00	8:15	Entrega Kits
8:15	8:30	Abertura
8:30	9:45	Aula: Homeostasia e mecanismos homeostáticos
09:45	10:00	Coffee
10:00	10:15	Linha de Pesquisa: Profa Dra Gláucia Santos e Prof Dr Thiago Andrade
10:15	11:45	Aula: Neurofisiologia (eletrofisiologia)
11:45	12:00	Linha de Pesquisa: Profa Dra Gabriela Chiarotto
12:00	13:00	Almoço
13:00	14:00	Aula: Fisiologia do Sistema Nervoso
14:00	14:15	Linha de Pesquisa: Profa Dra Danielle Bernardes
14:15	15:15	Aula: Fisiologia do Sistema Nervoso
15:15	15:30	Linha de Pesquisa: Prof Dr Mauricio Mazzi
15:30	16:00	Coffee
16:00	17:00	Cine Cultural

Inicio	Termino	Conteúdo – Terça-feira (2°dia)	
8:00	9:00	Aula: Fisiologia Muscular	
9:00	9:15	Linha de Pesquisa: Profa Dra Samara	
		Carvalho	
9:15	9:30	Linha de Pesquisa: Profa Dra Maira Felonato	
		e Prof Dr Milton Santamaria Jr	
9:30	10:00	Coffee	
10:00	11:00	Aula: Fisiologia Muscular	
11:00	11:30	Linha de Pesquisa: Profa Dra Andrea A. Aro e	
		Prof Dr Guilherme F. Caetano	
11:30	13:00	Almoço	
13:00	17:00	Módulo Prático	

Inicio	Termino	Conteúdo – Quarta-feira (3°dia)	
8:00	11:30	Módulo Prático	
11:30	13:00	Almoço	
13:00	14:00	Aula: Fisiologia Cardíaca	
14:00	14:15	Linha de Pesquisa: Profa Dra Rosana Catisti	
14:15	15:15	Aula: Fisiologia Cardíaca	
15:15	15:30	Linha de Pesquisa: Prof Dr Marcelo	
		Esquisatto	
15:30	16:00	Coffee	
16:00	17:30	Aula: Fisiologia Respiratória	

Inicio	Termino	Conteúdo — Quinta-feira (4°dia)	
8:00	9:00	Aula: Fisiologia Renal	
9:00	9:15	Linha de Pesquisa: Profa Dra Camila Oliveira	
9:15	9:30	Coffee	
9:30	10:30	Aula: Fisiologia Renal	
10:30	10:45	Linha de Pesquisa: Profa Dra Maria Esméria Amaral	
10:45	12:00	Aula: Fisiologia Endócrina	
12:00	13:00	Almoço	
13:00	17:00	Módulo Prático	

Inicio	Termino	Conteúdo – Sexta-feira (5°dia)
8:00	11:30	Módulo Prático
1130	13:00	Almoço
13:00	14:30	Mesa Redonda – "Dificuldades do uso medicinal de canabinoides"
14:30	15:00	Encerramento + Premiação
15:00	17:00	Confraternização

AULAS MAGNAS

HOMEOSTASIA E MECANISMOS HOMEOSTÁTICOS

Ministrante: FERNANDO LUBRECHET e ANGELA ELIZABETH GAIO

O termo homeostasia é usado, pelos fisiologistas, para definir a manutenção de condições quase constantes no meio interno. Todos os órgãos e tecidos do corpo humano executam funções que contribuem para manter essas condições relativamente constantes. Por exemplo, os pulões proveem oxigênio ao líquido extracelular para repor o oxigênio utilizado pelas células, os rins mantêm constantes as concentrações de íons e o sistema gastrointestinal fornece os nutrientes. A finalidade desta palestra é a de destacar, em primeiro lugar, a organização geral do corpo e, em segundo lugar, os meios pelos quais as diferentes partes do corpo operam em harmonia. Em suma, o corpo é na verdade uma sociedade de cerca de 100 trilhões de células, organizadas em estruturas funcionais distinta, algumas das quais são chamados órgãos. Cada estrutura funcional contribui com sua parcela para a manutenção das condições homeostáticas no liquido extracelular que é chamado de meio interno. Enquanto as condições normais forem mantidas nesse meio interno, as células do corpo continuam vivendo e funcionando adequadamente. Cada célula se beneficia da homeostasia e contribui com sua parcela para a sua manutenção. Essa interação recíproca proporciona a automaticidade contínua do corpo, até que um ou mais sistemas funcionais percam sua capacidade de contribuir com sua parcela da função. Quando isso acontece, todas as células do corpo sofrem. Disfunção extrema leva à morte, disfunção moderada leva à doenca.

NEUROFISIOLOGIA (ELETROFISIOLOGIA)

Ministrantes: NATÁLIA CRISTINA GOMES CARVALHO LIMA

No sistema nervoso diferenciam-se duas linhagens celulares: os neurônios e as células da glia (ou da neuroglia). Os neurônios são as células responsáveis pela recepção e transmissão dos estímulos do meio (interno e externo), possibilitando ao organismo a execução de respostas adequadas para a manutenção da homeostase. Para exercerem tais funções, contam com duas propriedades fundamentais: a irritabilidade (também denominada excitabilidade ou responsividade) condutibilidade. Irritabilidade é a capacidade que permite a uma célula responder a estímulos, sejam eles internos ou externos. Portanto, irritabilidade não é uma resposta, mas a propriedade que torna a célula apta a responder. Essa propriedade é inerente aos vários tipos celulares do organismo. No entanto, as respostas emitidas pelos tipos celulares distintos também diferem umas das outras. A resposta emitida pelos neurônios assemelha-se a uma corrente elétrica transmitida ao longo de um fio condutor: uma vez excitados pelos estímulos, os neurônios transmitem essa onda de excitação - chamada de impulso nervoso - por toda a sua extensão em grande velocidade e em um curto espaço de tempo. Esse fenômeno deve-se à propriedade de condutibilidade.

FISIOLOGIA DO SISTEMA NERVOSO

Ministrantes: ANGEL DOMICIANO SANTANA SANTOS e ERICSSON DA SILVA RAMOS

O Sistema Nervoso é um dos principais sistemas de controle responsáveis pela manutenção da homeostase. É constituído por rede complexa de neurônios que formam o sistema de controle rápido do corpo. Suas propriedades emergentes incluem a consciência, inteligência e emoções. É dividido em Sistema Nervoso Central (encéfalo e medula espinhal) e Sistema Nervoso Periférico. Os receptores sensoriais monitoram variáveis reguladas e enviam sinais de entrada para o Sistema Nervoso Central pelos neurônios sensoriais (aferentes). Os sinais de saída, tanto elétricos quanto químicos, percorrem as divisões eferentes (motora somática e autônoma) até seus alvos em todo o corpo. Neurônios motores somáticos controlam os músculos esqueléticos e os neurônios autonômicos controlam os músculos liso e cardíaco, glândulas e alguns tipos de tecido adiposo. Os neurônios autonômicos são subdivididos em simpático e parassimpático.

FISIOLOGIA MUSCULAR

Ministrantes: CAMILA RAQUEL DOS SANTOS PEZZONIA

Tendemos a pensar que movimento está sempre associado ao deslocamento do organismo, isto é, a mudança dele de um lugar para o outro. Pensar assim é uma ilusão, pois vários movimentos estão sendo realizados enquanto estamos parados: os dedos coçando um ponto do corpo; o estômago misturando e propelindo o seu conteúdo; o coração ejetando e fazendo circular o sangue através do sistema circulatório, o diafragma e os músculos intercostais garantindo a respiração, etc. Os órgãos efetuadores de movimento do nosso corpo são formados de células musculares geradores de tensão mecânica e são de três tipos histológicos: fibras musculares estriadas esqueléticas e cardíacas e fibras musculares lisas. A grande maioria do músculo estriado esquelético está associada ao esqueleto e garante a execução de movimentos e posturas do nosso corpo possibilitando a sua relação com o meio externo (obter água e nutrientes, relacionar-se com outras pessoas, defender-se contra as adversidades, etc.). Nem toda musculatura estriada chamada esquelética está diretamente associada aos elementos ósseos como os esfíncteres anais, vesicais e a musculatura facial. Os movimentos desejados ou intencionados são possíveis porque exercemos controle voluntário de áreas corticais associativas motoras diretamente sobre os núcleos motores somáticos da medula e do tronco encefálico. Já a atividade das fibras musculares lisas e cardíacas (assim como das glândulas) não estão sujeitas ao domínio consciente (a não ser que você, intencionalmente, simule medo ou ansiedade como fazem os atores. Ao "dar vida" à personagem, o ator poderá simular o estado emocional planejado e recrutar o conjunto de reações somáticas e viscerais apropriados ao contexto. Seja como for, a expressão motora somática revela uma infinidade de movimentos, dos mais sublimes (artísticos), complexos (produção de ferramentas tecnológicas), elaborados (linguagem) aos brutos (lutas). Veremos que a expressão motora somática está, intimamente, articulada a ajustes viscerais (respiratórias, fluxo e pressão sanguínea, metabólicas) e endócrinas.

FISIOLOGIA CARDÍACA

Ministrantes: JULIANA LOPES e BRUNO DOS SANTOS TELLES

O coração bate cerca de dois bilhões e meio de vezes em uma vida, bombeando cerca de cento e cinquenta milhões de litros de sangue. Ele bombeia sangue continuamente através do sistema circulatório. Nenhum outro órgão representa tão bem o espírito humano, pois sua própria existência é a pulsação da vida. O coração é uma bomba que leva o sangue pelo corpo através de um labirinto de veias e artérias. O sangue abastece cada célula de suprimentos essenciais para a vida e recolhe tudo que é descartado pelos músculos. Ele dá o impulso que faz o sangue circular. O coração pode acelerar ou reduzir o ritmo de toda a circulação. Um corpo em repouso requer menos oxigênio. O coração bate mais devagar e o sangue leva 1 minuto para fazer uma volta completa. Exercícios ou emoções, por exemplo, deixam as células famintas por alimentos e oxigênio. O coração passa a bater mais rápido para manter o suprimento. As paredes do coração são de um tipo extraordinário de fibra muscular. Por meio de sua contração, obedecendo o ritmo de descargas elétricas, impulsiona o sangue para o corpo. A contração do músculo é controlada por células nervosas chamadas de marcapasso ou nodo sinoatrial. Além disso, atende às mensagens de outras partes do corpo, acelerando ou diminuindo o fluxo sanguíneo de acordo com o pedido. Este incansável órgão pode parecer extremamente complexo, mas obedece a um esquema simples. Através dos movimentos de contração e relaxamento, o sangue é bombeado para todo o corpo formando a circulação sistêmica e pulmonar. A fase de contração chama-se sístole e a de relaxamento, diástole.

FISIOLOGIA RESPIRATÓRIA

Ministrantes: JUSSARA AGUIAR e SELMA DELGADO DE SOUZA MORO

A respiração é o conjunto de eventos envolvidos no transporte de oxigênio (O2) desde o ambiente até a célula e de dióxido de carbono (CO2) em sentido contrário. A finalidade da respiração é proporcionar o aporte de quantidades adequadas de O2 à célula e remover quantidades adequadas de CO2 desta, a fim de manter a homeostase do meio. Assim, a respiração pode ser dividida em quatro processos principais: a) ventilação pulmonar, processo no qual o O2 contido no ar inspirado é transportado para o interior do pulmão, enquanto o CO2 é eliminado com o ar expirado (mecanismo de convecção); b) difusão alveolocapilar, no qual as moléculas de O2 são transportadas em sentido oposto ao das moléculas de CO2 (mecanismo de difusão), através das membranas que separam o ar alveolar do sangue capilar; c) transporte de O2 e de CO2 pelo sangue, no qual, via hemoglobina, o O2 é transportado para os tecidos, enquanto o CO2 difunde-se das células para o sangue até os pulmões; d) difusão no tecido, em que o consumo contínuo de O2 e a produção contínua de CO2 pelas células geram gradientes de pressão parcial entre o sangue capilar e o líquido intracelular, fazendo com que o O2 se difunda para a célula, e o CO2, para o sangue capilar. Os processos envolvidos no transporte de O2 e de CO2 entre o ambiente e a célula estão inter-relacionados; por conseguinte, qualquer eventual alteração em um deles pode modificar a eficácia dos mecanismos de transporte subsequentes. O sistema e o aparelho respiratórios diferem entre si quanto às suas estruturas anatômicas. O sistema respiratório é constituído por áreas cerebrais, nervos que conectam as áreas cerebrais com os músculos respiratórios, caixa torácica e pulmões. Já o aparelho respiratório corresponde ao conjunto das seguintes estruturas: fossas nasais, cavidade nasal, boca, naso-orofaringe, laringofaringe, laringe, traqueia, brônquios, bronquiolos e alvéolos. As estruturas das vias aéreas superiores até a traqueia são responsáveis pela condução, filtração, aquecimento e umidificação do ar. O processo respiratório e ventilatório é automático, aeralmente rítmico e controlado por mecanismos centrais. O pulmão direito tem três lobos, e o esquerdo, apenas dois, cujos brônquios, vasos pulmonares e linfáticos estão posicionados no hilo, situado na face medial de cada pulmão. A traqueia bifurca-se em dois brônquios primários, que entram nos lobos subdividem-se pulmonares | em seguida, em sequimentos progressivamente menores (bronquíolos, ductos e sacos alveolares).

FISIOLOGIA RENAL

Ministrantes: ANADELLY CRISTINA DA SILVA DE LIMA e LETÍCIA MAYARA PAIVA

O sistema excretor é formado por um conjunto de órgãos que filtram o sangue, produzem e excretam a urina - o principal líquido de excreção do organismo. É constituído por um par de rins, um par de ureteres, pela bexiga urinária e pela uretra. Os rins situam-se na parte dorsal do abdome, logo abaixo do diafragma, um de cada lado da coluna vertebral, nessa posição estão protegidos pelas últimas costelas e também por uma camada de gordura. Têm a forma de um grão de feijão enorme e possuem uma cápsula fibrosa, que protege o córtex mais externo, e a medula - mais interna. Cada rim é formado de tecido conjuntivo, que sustenta e dá forma ao órgão, e por milhares ou milhões de unidades filtradoras, os néfrons, localizados na região renal. O néfron é uma longa estrutura tubular microscópica que possui, em uma das extremidades, uma expansão em forma de taça, denominada cápsula de Bowman, que se conecta com o túbulo contorcido proximal, que continua pela alça de Henle e pelo túbulo contorcido distal; este desemboca em um tubo coletor. São responsáveis pela filtração do sangue e remoção das excreções.

FISIOLOGIA ENDÓCRINA

Ministrantes: CRISTIANE ALVES SERRA e MARCELA FERNANDA SGANZELLA

Dá-se o nome de sistema endócrino ao conjunto de órgãos que apresentam como atividade característica a produção de secreções denominadas hormônios, que são lançados na corrente sanguínea e irão atuar em outra parte do organismo, controlando ou auxiliando o controle de sua função. Os órgãos que têm sua função controlada e/ou regulada pelos hormônios são denominados órgãos-alvo. Os tecidos epiteliais de secreção ou epitélios glandulares formam as glândulas, que podem ser uni ou pluricelulares. As glândulas pluricelulares não são apenas aglomerados de células que desempenham as mesmas funções básicas e têm a mesma morfologia geral e origem embrionária - o que caracteriza um tecido. São na verdade órgãos definidos com arquitetura ordenada. Elas estão envolvidas por uma cápsula conjuntiva que emite septos, dividindo-as em lobos. Vasos sanguíneos e nervos penetram nas alândulas, fornecendo alimento e estímulo nervoso para as suas funções. Os hormônios influenciam praticamente todas as funções dos demais sistemas corporais. Frequentemente o sistema endócrino interage com o sistema nervoso, formando mecanismos reguladores bastante precisos. O sistema nervoso pode fornecer ao endócrino a informação sobre o meio externo, ao passo que o sistema endócrino regula a resposta interna do organismo a esta informação. Dessa forma, o sistema endócrino, juntamente com o sistema nervoso, atua na coordenação e regulação das funções corporais.

MESA-REDONDA

DIFICULDADES DO USO MEDICINAL DE CANABINOIDES

Chair: PAULO ROBERTO LOPES NALESSO

Participantes: PROF. DR. ARMINDO ANTONIO ALVES;

PROFA. DRA. FERNANDA OLIVEIRA DE GASPARI DE GASPI

PROF. ME. JOÃO PEDRO BERNARDES FARIA

A Cannabis foi uma das primeiras plantas cultivadas pelo homem. Substâncias psicoativas da Cannabis, os canabinóides, estão localizadas por toda a planta. Entretanto, muitas são as dificuldades para seu uso medicinal. Canabidiol (CBD) é depressor do sistema nervoso central e causa efeitos anticonvulsivos, ansiolíticos, analgésicos e anti-inflamatórios - daí a importância de seu uso clínico para casos de epilepsia, esquizofrenia e esclerose múltipla. O que dificulta sua utilização medicinal são os efeitos adversos que apresenta.

APRESENTAÇÃO DAS LINHAS DE PESQUISA

O Programa de Pós Graduação em Ciências Biomédicas dispõem de linhas de pesquisa que expressam o que o Centro Universitário Hermínio Ometto - FHO já tem consolidado em experiências e projetos para o desenvolvimento técnico-científico e formação de recursos humanos.

1. Patofisiologia do reparo tecidual

Propõe avaliar respostas celulares, teciduais, moleculares e ferramentas terapêuticas em diferentes modelos experimentais.

2. Fisiologia molecular do metabolismo

Propõe investigar mecanismos biomoleculares, metabólicos e inflamatórios em diferentes modelos experimentais

Nome	Linhas de pesquisa - Projeto
Andrea Aparecida de Aro	Linha 1 - Aspectos estruturais, bioquímicos e moleculares da terapia celular com células-tronco mesenquimais no reparo tecidual
Camila Andréa de Oliveira	Linha 2 - Bases moleculares de genes envolvidos nas vias de comunicação intercelular em modelos experimentais
Gláucia M. Tech dos Santos	Linha 1 - Efeitos biológicos de agentes físicos e extratos vegetais na cicatrização de lesões teciduais
Guilherme Ferreira Caetano	Linha 1 - Terapia celular e aplicação de biomateriais no reparo tecidual
Maíra Felonato Mendes	Linha 2 - Caracterização da resposta imunológica em modelos experimentais
Marcelo A. M. Esquisatto	Linha 1 - Aspectos biológicos e funcionais de tecidos conjuntivos no envelhecimento
Maria Esmeria C. do Amaral	Linha 2 - Estudo dos fenômenos funcionais e moleculares das intervenções dietéticas no metabolismo da insulina
Maurício Ventura Mazzi	Linha 2 - Caracterização química e biológica de compostos bioativos de origem animal e vegetal com aplicação biotecnológica
Rosana Catisti	Linha 2 - Programação fetal e bioenergética mitocondrial frente a variáveis metabólicas
Samara Camaçarí de Carvalho	Linha 2 - Biologia da fibra muscular em condições patológicas
Thiago Antônio Moretti de Andrade	Linha 1 - Imunofisiopatologia da cicatrização de novos insumos terapêuticos em modelos experimentais
Milton Santamaria Junior	Linha 1 - Avaliação dos efeitos biológicos induzidos por agentes físicos e químicos em condições normais e patológicas, envolvidos nos tecidos ósseos e periodontais do sistema estomatognático

MÓDULOS PRÁTICOS

Nos módulos práticos, alunos de pós-graduação e de iniciação científica que possuem notoriedade auxiliaram seus orientadores a conduzirem as aulas práticas.

Os módulos práticos somaram 15 horas que foram computadas nos certificados dos participantes selecionados.

	PROFESSOR RESPONSÁVEL	
1	Dra. Andrea Aparecida de Aro Dr. Guilherme Ferreira Caetano	Cultura celular
2	Dra. Maria Esméria C. Amaral	Oficina Endócrina
3	Me. Natália C. G. Carvalho Lima Me. Lucas Eduardo Orzari	Western Blot
4	Dr. Thiago A. Moretti de Andrade	Bases histológicas
5	Dr. Maurício Ventura Mazzi	Purificação de proteínas
6	Dra. Maíra Felonato Mendes	Técnicas imunológicas
7	Dra. Rosana Catisti	Técnicas bioquímicas
8	Dra. Samara Camaçarí de Carvalho	Dos números aos gráficos (Plotagem de dados)